Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
BMC Cancer ; 20(1): 292, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264860

RESUMO

BACKGROUND: Cancer metastasis and drug resistance have traditionally been studied separately, though these two lethal pathological phenomena almost always occur concurrently. Brain metastasis occurs in a large proportion of lung cancer patients (~ 30%). Once diagnosed, patients have a poor prognosis surviving typically less than 1 year due to lack of treatment efficacy. METHODS: Human metastatic lung cancer cells (PC-9-Br) were injected into the left cardiac ventricle of female athymic nude mice. Brain lesions were allowed to grow for 21 days, animals were then randomized into treatment groups and treated until presentation of neurological symptoms or when moribund. Prior to tissue collection mice were injected with Oregon Green and 14C-Aminoisobutyric acid followed by an indocyanine green vascular washout. Tracer accumulation was determined by quantitative fluorescent microscopy and quantitative autoradiography. Survival was tracked and tumor burden was monitored via bioluminescent imaging. Extent of mutation differences and acquired resistance was measured in-vitro through half-maximal inhibitory assays and qRT-PCR analysis. RESULTS: A PC-9 brain seeking line (PC-9-Br) was established. Mice inoculated with PC-9-Br resulted in a decreased survival time compared with mice inoculated with parental PC-9. Non-targeted chemotherapy with cisplatin and etoposide (51.5 days) significantly prolonged survival of PC-9-Br brain metastases in mice compared to vehicle control (42 days) or cisplatin and pemetrexed (45 days). Further in-vivo imaging showed greater tumor vasculature in mice treated with cisplatin and etoposide compared to non-tumor regions, which was not observed in mice treated with vehicle or cisplatin and pemetrexed. More importantly, PC-9-Br showed significant resistance to gefitinib by in-vitro MTT assays (IC50 > 2.5 µM at 48 h and 0.1 µM at 72 h) compared with parental PC-9 (IC50: 0.75 µM at 48 h and 0.027 µM at 72 h). Further studies on the molecular mechanisms of gefitinib resistance revealed that EGFR and phospho-EGFR were significantly decreased in PC-9-Br compared with PC-9. Expression of E-cadherin and vimentin did not show EMT in PC-9-Br compared with parental PC-9, and PC-9-Br had neither a T790M mutation nor amplifications of MET and HER2 compared with parental PC-9. CONCLUSION: Our study demonstrated that brain metastases of lung cancer cells may independently prompt drug resistance without drug treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/secundário , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Receptores ErbB/genética , Etoposídeo/uso terapêutico , Feminino , Gefitinibe/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Pemetrexede/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
BMC Cancer ; 18(1): 1225, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526520

RESUMO

BACKGROUND: Brain tumor vasculature can be significantly compromised and leakier than that of normal brain blood vessels. Little is known if there are vascular permeability alterations in the brain adjacent to tumor (BAT). Changes in BAT permeability may also lead to increased drug permeation in the BAT, which may exert toxicity on cells of the central nervous system. Herein, we studied permeation changes in BAT using quantitative fluorescent microscopy and autoradiography, while the effect of chemotherapy within the BAT region was determined by staining for activated astrocytes. METHODS: Human metastatic breast cancer cells (MDA-MB-231Br) were injected into left ventricle of female NuNu mice. Metastases were allowed to grow for 28 days, after which animals were injected fluorescent tracers Texas Red (625 Da) or Texas Red dextran (3 kDa) or a chemotherapeutic agent 14C-paclitaxel. The accumulation of tracers and 14C-paclitaxel in BAT were determined by using quantitative fluorescent microscopy and autoradiography respectively. The effect of chemotherapy in BAT was determined by staining for activated astrocytes. RESULTS: The mean permeability of texas Red (625 Da) within BAT region increased 1.0 to 2.5-fold when compared to normal brain, whereas, Texas Red dextran (3 kDa) demonstrated mean permeability increase ranging from 1.0 to 1.8-fold compared to normal brain. The Kin values in the BAT for both Texas Red (625 Da) and Texas Red dextran (3 kDa) were found to be 4.32 ± 0.2 × 105 mL/s/g and 1.6 ± 1.4 × 105 mL/s/g respectively and found to be significantly higher than the normal brain. We also found that there is significant increase in accumulation of 14C-Paclitaxel in BAT compared to the normal brain. We also observed animals treated with chemotherapy (paclitaxel (10 mg/kg), erubilin (1.5 mg/kg) and docetaxel (10 mg/kg)) showed activated astrocytes in BAT. CONCLUSIONS: Our data showed increased permeation of fluorescent tracers and 14C-paclitaxel in the BAT. This increased permeation lead to elevated levels of activated astrocytes in BAT region in the animals treated with chemotherapy.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Neoplasias da Mama/patologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Modelos Teóricos , Paclitaxel/farmacologia , Permeabilidade
5.
PeerJ ; 6: e5602, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405966

RESUMO

Colorectal cancer ranks third among the most commonly diagnosed cancers in the United States. Current therapies have a range of side effects, and the development of a reliable animal model to speed the discovery of safe effective preventative therapies would be of great value. A cross-sectional study in a large Appalachian population recently showed an association between low circulating levels of perfluorooctane sulfonate (PFOS) and a reduced prevalence of colorectal cancer. A study using APCmin (C57BL/6J-ApcMin/J) mice prone to familial adenomatous polyposis found PFOS was protective when exposure occurred during tumor development. To test the possible benefit of PFOS on spontaneous colorectal cancer, we developed a mouse model utilizing primary patient colorectal cancer implants into NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl /Sz) mice. Study goals included: (1) to assess potential factors supporting the successful use of colorectal cancer from heterogeneous tumors for PDX studies; and, (2) evaluate PFOS as a therapy in tumor matched pairs of mice randomized to receive PFOS or vehicle. The time in days for mice to grow primary tumors to 5 mm took almost 2 months (mean = 53.3, se = 5.7, range = 17-136). Age of mice at implantation, patient age, gender and race appeared to have no discernable effect on engraftment rates. Engraftment rates for low and high-grade patient tumors were similar. PFOS appeared to reduce tumor size dramatically in one group of tumors, those from the right ascending colon. That is, by 5 weeks of treatment in two mice, PFOS had eliminated their 52.4 mm3 and 124.6 mm3 masses completely, an effect that was sustained for 10 weeks of treatment; in contrast, their corresponding matched vehicle control mice had tumors that grew to 472.7 mm3 and 340.1 mm3 in size respectively during the same period. In a third xenograft mouse, the tumor growth was dramatically blunted although not eliminated, and compared favorably to their matched vehicle controls over the same period. These preliminary findings suggested that this mouse model may be advantageous for testing compounds of potential value in the treatment of colorectal cancer, and PFOS may have utility in selected cases.

6.
Pharmacol Res ; 132: 47-68, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604436

RESUMO

In women, breast cancer is the most common cancer diagnosis and second most common cause of cancer death. More than half of breast cancer patients will develop metastases to the bone, liver, lung, or brain. Breast cancer brain metastases (BCBM) confers a poor prognosis, as current therapeutic options of surgery, radiation, and chemotherapy rarely significantly extend life and are considered palliative. Within the realm of chemotherapy, the last decade has seen an explosion of novel chemotherapeutics involving targeting agents and unique dosage forms. We provide a historical overview of BCBM chemotherapy, review the mechanisms of new agents such as poly-ADP ribose polymerase inhibitors, cyclin-dependent kinase 4/6 inhibitors, phosphatidyl inositol 3-kinaseinhibitors, estrogen pathway antagonists for hormone-receptor positive BCBM; tyrosine kinase inhibitors, antibodies, and conjugates for HER2+ BCBM; repurposed cytotoxic chemotherapy for triple negative BCBM; and the utilization of these new agents and formulations in ongoing clinical trials. The mechanisms of novel dosage formulations such as nanoparticles, liposomes, pegylation, the concepts of enhanced permeation and retention, and drugs utilizing these concepts involved in clinical trials are also discussed. These new treatments provide a promising outlook in the treatment of BCBM.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sistemas de Liberação de Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...